A Friendly Intro to Cobalt Strike’s UDRL

11t Sept 2025

Obligatory whoami

WHOAMI

= Hugo /@rwxstoned
= Adversary Emulation

= Some Blue Team background too

Why this talk ?

Why this talk

There are pieces of knowledge, but no glue.

Revisiting the User-Defined Reflective Loader
Part 1: Simplifying Development

This blog post accompanies a new addition to the Arsenal Kit — The User-Defined
Reflective Loader Visual Studio (UDRL-VS). Over the past few months, we

Revisiting the UDRL Part 3: Beacon User Data
. s Awmd The UDRL and the Sleepmask are key components of Cobalt Strike's evasion
SECTION{ B) NTSTATUS resolveloaderFunctions({ PAPI pApi) oo strateqgy, yet historically they have not worked well together. For example, prior to

PPEE Peb;
HAMDLE hNtdl1l;

Peb = NtCurrentTeb()-*ProcessEnvironmentBlock;
hhtdll = FindModule(H_LIB_NTDLL, Peb, NULL);

if{ 'hNtdll)}

{

return -1;

https://github.com/kyleavery/Aceldr/blob/main/src/ace.c

Agenda

What’s a Cobalt Strike Beacon ?
UDRL: why ?

Getting started with UDRL-VS
Demo

What’s a Cobalt Strike Beacon exactly ?

Cobalt Strike Beacon

What’s a PE File

= Back to basics: a Cobalt Strike implant is a DLL.
= A PE file on disk is different to a PE in memory.

= Reading a PE from disk, and “mapping” it is done by Windows
(LoadLibrary () for instance)

= This involves a lot of parsing, copying sections in memory,
marking them properly (RX, RW, etc...), ultimately executing the
EntryPoint.

Entr

yPoint

Cobalt Strike Beacon

Reflective Loading

I
e stephenfewer update bins and gitconfig 178ba2a - 12 years ago 1) 13 Commits
= Loadi fi
Loa I ng a P E I e Wa S il bin update bins and gitconfig 12 years ago
I nte n d Ed to be d O n e by 4 bugfix. REFLECTIVELOADER's return type was not defined co... 12 years ago
th e OS . M inject bugfix, REFLECTIVELOADER's return type was not defined co... 12 years ago
] .gitignore update bins and gitconfig 12 years ago
= Stephen Fewer showed :
. [LICENSE.txt First Commit. 14 years ago
how to do it manually,
. . . [Readmemd update readme to specify what os/arch this all works on. 13 years ago
still widely used in
O rdisin Windows RT (ARM) dll injection support. Upgraded project t... 13 years ago

malware 15 years later.

[0 README &[® BSD-3-Clause license

About

Reflective DLL injection is a library injection technique in which the concept of reflective programming is employed to
perform the loading of a library from memory into a host process. As such the library is responsible for loading itself
by implementing a minimal Portable Executable (PE) file loader. It can then govern, with minimal interaction with the
host system and process, how it will load and interact with the host.

Cobalt Strike Beacon

Reflective Loading

= A Reflective Loader is a piece of code embedded within the PE file,
capable of autonomously loading it in-memory.

= Historically: = Alternative:

I Prepend-loader
MZARUH....
DLL Headers MZARUH...
DLL Headers
fext
Jdeat
ReflectiveLoader() |
rdata
Jsdata
%s (admin), %s as %s \ %s: %d, etc.
dita %s (admin), %s as %s\%s: %d, etc.
data
.pdata
: {51
.reloc pda
Jreloc

Cobalt Strike Beacon

Reflective Loading

So what happens when your “loader” runs a Cobalt Strike “raw beacon” ?

\

(1) executes - b MAQRUH... _="Y| MzARUH...
—————————— -
Mv Fancy Loader |73 ~ N\l DLLHeaders (3)..-" DLL Headers
Cd
Y Y (0) altocates memory, copy___, AN el
-------------- 1 5‘«\39,,'
-- -
toxt | g el text
- I
i //' (4) R | —cccoooooooooooooooossog EntryPoint
P Ot L
i Ptag = eXeEEt_e_s —————
v S, e
ReflectiveLoadef() N~~~ ReflectiveLoader()
.rdata .rdata
%s (adngin), %s as %s \ %s: %A\etc. %s (admin), %s as %s\ %s: %d, etc.
This dialog generates a payload to stz dat \ «data
Strike listener. Several output options
%tu \ .pdata
Listener: |MyBeacon
output: [Raw eloc \ reloc
A J

(5) cleans up

Rasta Mouse
@_RastaMouse

Cobalt Strike Beacon

Reflective Loading

In summary, you are loading a (reflective)loader.

The equation:

MyFancyLoader (Loader (

My shellcode injector
uses indirect syscalls,
API unhooking, and hardware
breakpoints to bypass EDR.

¥

Your Beacon's
ReflectiveLoader

N uses VirtualAlloc.

Cobalt Strike Beacon

Reflective Loading

SOARDE BIC How can we execute a PE header ?!
DLL Headers

et The PE header generated for your “raw beacon” is actually also Position-Independ Code

(PIC), so it is valid code.

M

ReflectiveLoader() |

rdata
This is possible because “MZ” as assembly is pop r10, It can be nullified with push r10
which is “AR”

%s (admin), %s as %s\ %s: %d, etc.

.data

.pdata

.reloc

B OC_ hanr N 71 IC N b ace FanarsbarMarbban fnlain hasran w64 hinl

x64 Native Tools Command Prompt for VS 2022 Preview O X

N

C:\Program Files\Microsoft Visual Studio\2022\Preview>dumpbin /exports C:\Users\operator\Desktop\plain_beacon_x64.bin

Microsoft (R) COFF/PE Dumper Version 14.44.35209.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file C:\Users\operator\Desktop\plain_beacon_x64.bin
File Type: DLL
Section contains the following exports for beacon.x64.dll
00000000 characteristics
68151FA3 time date stamp Fri May 2 20:40:19 2025
.00 version
1 ordinal base
1 number of functions
1 number of names

ordinal hint RVA name

© ©001CCAO Reflectiveloader

B Summary

. 17000
Eﬁl 3000
11000

2000
36000

Exported Functions [1 entry]

Offset Ordinal Function RVA Name RVA Name Forwarder
45FF8 1 1CCAD 47011 ReflectiveLoader

4D SA 41 52 55 48 85 ES 48 81 EC 20 00 00 00 48
8D 1D EA FF FF FF 48 85 DF 48 81 C3 A0 CO 01 00
FF D3 41 B8 FO BS A2 5¢€ €8 04 00 00 00 S5A 48 895
FS FF DO 00 00 00 00 00 00 00 00 00 08 O1 00 00

General Strings DOS Hdr Rich Hdr File Hdr Optional Hdr Section Hdrs Exports Imy

Hex Disasm

Introducing UDRL

How to remediate this ?

Rasta Mouse
@_RastaMouse

My shellcode injector
uses indirect syscalls,
API unhooking, and hardware
breakpoints to bypass EDR.

pra———
Your Beacon's
ReflectiveLoader

N uses VirtualAlloc.

Obfuscation history with Cobalt Strike:

1.

GoA W N

Replace strings (malleable profile: strrep)

Tweak how the beacon is loaded in memory (malleable profile: stage {})
Sleep (Sleepmask)

Customize the Sleepmask (Sleepmask)

Customize how the beacon is loaded in memory

YOU ARE
HERE

UDRLs

#H# Why

Replace strings (malleable profile: strrep)

MyFancyLoader (Loader (

UDRL: define from scratch how thg beacon is loaded in memory
Tweak how the beacon is loaded in memory (malleable profile: stage {})

1] README & MIT license

AcelLdr - Avoid Memory Scanners Strike Reflective Loader

A position-independent reflective loader for Cobalt Strike. Zero results from Hunt-Sleeping-Beacons, BeaconHunter,

BeaconEye, Patriot, Moneta, PE-sieve, or MalMemDetect.

SECTION(B) PVOID copyBeaconSections(PVOID buffer, REG reg)

plpi->ntdll.NtAllocateVirtualMemory = FindFunction{ hMtdll, H_API_NTALLOCATEVIRTUALMEMORY };
Api-»ntdll.NtProtectVirtualMemory = FindFunction(hMtdll, H_API_NTPROTECTWIRTUALMEMORY);
Function{ hNtdll, H_API_RTLCREATEHEAP J;

=]

phpi->ntdll.RtlCreateHeap = F

Api.ntdll.NtAllocateVirtualMemory({ HAMDLE)-1, &MemoryBuffer, @, &Reg.Full, MEM_COMMIT, PAGE_READWRITE);

s iae e

A proof-of-concept User-Defined Reflective Loader (UDRL) which aims to recreate, integrate, and enhance Cobalt

Strike's evasion features!

UDRLs

UDRL-VS

Revisiting the User-Defined Reflective Loader
Part 1: Simplifying Development

This blog post accompanies a new addition to the Arsenal Kit — The User-Defined
Reflective Loader Visual Studio (UDRL-VS). Over the past few months, we
—

Cobalt Strike response was to introduce a standardized
Visual Studio template building a simple loader (UDRL-VS)

To this: I Prepend-loader PIC

Go from this: MZARUH...
DLL Headers
T BUILD DEBUG TEAM OOLS .:::bn.‘u .|'l..".'.' 3 Bu\ Iten
" Senicelavees @ %
rdata

%s (odmin), %s as %s\%s: %d, etc.

data

pdata

Jreloc

UDRLs

Extracting the PIC UDRL from an executable

T BULD DEBUG TEAM

P intemet Bp

Senicelsvos B X

|
I Prepend-loader P|CI

MZARUH....
DLL Headers
‘\O(\
st
xe text
xs e
aC
oS
D08 Hender UDRL-VS comes with a post-build Python job (udrl.py)
pos Stub which extracts the actual PIC blob from the executable srdata
PE Header
Section Header %s (odmin), %s as %s\%s: %d, etc.

Sections data

toxt -pdata

ST Jreloc

UDRLs

PIC Constraints

» Everything must be in a . text section (strings must be “stack strings”)

» Most functions calls must be resolved at runtime (you don’t execute VirtualAlloc () : you
find its address, then you execute the function at that address).

= MYSTRUCT myStruct = { 0 }; will fail asit executesmemcpy () under the hood. Initialize
it to Ox00 yourself.

= Certain Visual Studio optimizations need to be disabled to avoid these types of behavior.

Expect some frustration.

f »¢ RastaMouse
~>=> | have call stack spoofing working |n5|de a udri—vs projec:t but it crashes

when | build it into PIC. Kill me now ¢

UDRLs

PIC Constraints

Normal Developer Malware Developer PIC Developer

UDRLs

PIC Constraints

The UDRL-VS template provides various helpers to help you address most of those challenges:

= Define strings with PIC_STRING (myvar, “[*] Loaded at 0x%p\n”);
= Compile-time hashing readily available in the template.
= PRINT() macro to replace printf ()

UDRLs

UDRL Constraints

If you want to use UDRL, with great powers come great responsibilities...

YOU allocate memory and copy sections
into them

YOU put whichever values you want in
the various headers (are they even
stage {

set userwx “"false”; needed ?)
set compile_time "14 Jul 2889 8:14:28",;

set image_size x86 "51288@";

set image size x64 "512008";

set obfuscate "true”;

" YOU decide what to copy in memory, for instance,
headers are not needed for actual execution, cf.

the obfuscation-loader:

https://www.cobaltstrike.com/blog/revisiting-the-udrl-part-2-
obfuscation-masking

UDRLs

Release vs Debug mode

How to test a PIC blob of code ? (it is NOT an .exe)

I Prepend-loader PIC UDRL blob compiled by Visual Studio in Release mode and extracted.
MZARUH....
DLL Headers /”raw beacon”, generated by console (Aggressor scripts allow you to modify this)
Jext
Options:

1. Create a simple loader, allocate memory, run your whole implant, see what
happens [realistic]

2. Build it as an .exe, artificially embed the raw beacon in a variable [convenient]

Jrdata

%s (odmin), %s as %s\%s: %d, etc.

data

pdata

Jreloc

UDRLs

Release vs Debug mode

Debug mode allows you to run a mock loader as an .exe. You can use PRINT () to print statements to
the console.

In Release mode... there is no console. A solution is to monitor the process in WinDbg.

PRINT () is available in Debug mode natively. For Release mode, you can use OutputDebugSring () to
log strings and see them in WinDbg. | have implemented a Macro helper making it easier.

Demo

What Next ?

= Solution 'udrl-vs' (7 of 7 projects)

- I8
= Download the UDRL-VS (in the Artifact Kit) BB extc2-loader

= Check the 3 loaders, starting with the most basic one: default-loader > [bud-loader
= Obfuscation-loader shows how to perform the mapping with stealthier EUEEESEE = FA TS LG
options i
. ibra
» Bud-loader shows how to leverage a new feature of Cobalt Strike to pass E . :
arbitrary data to the Cobalt Strike beacon. This allows you to make full use [EEERSES obfuscation-loader

of other Cobalt Strike features (notably the Sleepmask and BeaconGate) > [H] postex-loader

Thank You!

References

® The blog series published by Cobalt Strike:
https://www.cobaltstrike.com/blog/revisiting-the-udrl-part-1-simplifying-development

= A helper Macro to help print out debug statements from UDRL:
https://rwxstoned.github.io/2025-07-06-Better-debugging-UDRL/

= Some good documentation on Cobalt Strike’s key elements, including the UDRL:
https://rastamouse.me/udrl-sleepmask-and-beacongate/

