
11th Sept 2025

WHOAMI

 Hugo /@rwxstoned
 Adversary Emulation
 Some Blue Team background too

Why this talk

There are pieces of knowledge, but no glue.

https://github.com/kyleavery/AceLdr/blob/main/src/ace.c

Cobalt Strike Beacon
What’s a PE File

 Back to basics: a Cobalt Strike implant is a DLL.
 A PE file on disk is different to a PE in memory.
 Reading a PE from disk, and “mapping” it is done by Windows

(LoadLibrary() for instance)
 This involves a lot of parsing, copying sections in memory,

marking them properly (RX, RW, etc…), ultimately executing the
EntryPoint.

EntryPoint

Cobalt Strike Beacon
Reflective Loading

 Loading a PE file was
intended to be done by
the OS.

 Stephen Fewer showed
how to do it manually,
still widely used in
malware 15 years later.

Cobalt Strike Beacon
Reflective Loading

 A Reflective Loader is a piece of code embedded within the PE file,
capable of autonomously loading it in-memory.

 Historically:  Alternative:
Prepend-loader

Cobalt Strike Beacon
Reflective Loading

So what happens when your “loader” runs a Cobalt Strike “raw beacon” ?

My Fancy Loader
(1)

(2)
(3)

(4) EntryPoint

(5) cleans up

(0) allocates memory, copy jumps to

Cobalt Strike Beacon
Reflective Loading

In summary, you are loading a (Reflective)loader.

MyFancyLoader (Loader ())

The equation:

Cobalt Strike Beacon
Reflective Loading

PIC How can we execute a PE header ?!

The PE header generated for your “raw beacon” is actually also Position-Independ Code
(PIC), so it is valid code.

This is possible because “MZ” as assembly is pop r10, It can be nullified with push r10
which is …. “AR”

Cobalt Strike Beacon
Reflective Loading

A “raw beacon” is both a DLL, and a PIC blob, it depends how you look at it.

UDRLs
Why

How to remediate this ?

UDRLs
Why

Obfuscation history with Cobalt Strike:
1. Replace strings (malleable profile: strrep)
2. Tweak how the beacon is loaded in memory (malleable profile: stage {})
3. Sleep (Sleepmask)
4. Customize the Sleepmask (Sleepmask)
5. Customize how the beacon is loaded in memory

UDRLs
Why

MyFancyLoader (Loader ())

Replace strings (malleable profile: strrep)

Tweak how the beacon is loaded in memory (malleable profile: stage {})
UDRL: define from scratch how the beacon is loaded in memory

UDRLs
Why

UDRLs
UDRL-VS

Cobalt Strike response was to introduce a standardized
Visual Studio template building a simple loader (UDRL-VS)

Prepend-loader

Go from this:
To this: PIC

UDRLs
Extracting the PIC UDRL from an executable

Prepend-loaderPIC
Builds an .exe

UDRL-VS comes with a post-build Python job (udrl.py)
which extracts the actual PIC blob from the executable

UDRLs
PIC Constraints

 Everything must be in a .text section (strings must be “stack strings”)
 Most functions calls must be resolved at runtime (you don’t execute VirtualAlloc(): you

find its address, then you execute the function at that address).
 MYSTRUCT myStruct = { 0 }; will fail as it executes memcpy() under the hood. Initialize

it to 0x00 yourself.
 Certain Visual Studio optimizations need to be disabled to avoid these types of behavior.

Expect some frustration.

UDRLs
PIC Constraints

Normal Developer Malware Developer PIC Developer

UDRLs
PIC Constraints

 Define strings with PIC_STRING(myvar, “[*] Loaded at 0x%p\n”);
 Compile-time hashing readily available in the template.
 PRINT() macro to replace printf()

The UDRL-VS template provides various helpers to help you address most of those challenges:

UDRLs
UDRL Constraints

If you want to use UDRL, with great powers come great responsibilities…
YOU allocate memory and copy sections
into them

YOU put whichever values you want in
the various headers (are they even
needed … ?)

YOU decide what to copy in memory, for instance,
headers are not needed for actual execution, cf.
the obfuscation-loader:
https://www.cobaltstrike.com/blog/revisiting-the-udrl-part-2-
obfuscation-masking

UDRLs
Release vs Debug mode

How to test a PIC blob of code ? (it is NOT an .exe)

Prepend-loader

“raw beacon”, generated by console (Aggressor scripts allow you to modify this)

PIC UDRL blob compiled by Visual Studio in Release mode and extracted.

Options:
1. Create a simple loader, allocate memory, run your whole implant, see what

happens [realistic]
2. Build it as an .exe, artificially embed the raw beacon in a variable [convenient]

UDRLs
Release vs Debug mode

Debug mode allows you to run a mock loader as an .exe. You can use PRINT() to print statements to
the console.

In Release mode… there is no console. A solution is to monitor the process in WinDbg.

PRINT() is available in Debug mode natively. For Release mode, you can use OutputDebugSring() to
log strings and see them in WinDbg. I have implemented a Macro helper making it easier.

What Next ?

 Download the UDRL-VS (in the Artifact Kit)
 Check the 3 loaders, starting with the most basic one: default-loader
 Obfuscation-loader shows how to perform the mapping with stealthier

options
 Bud-loader shows how to leverage a new feature of Cobalt Strike to pass

arbitrary data to the Cobalt Strike beacon. This allows you to make full use
of other Cobalt Strike features (notably the Sleepmask and BeaconGate)

(1)

(2)

(3)

 The blog series published by Cobalt Strike:
https://www.cobaltstrike.com/blog/revisiting-the-udrl-part-1-simplifying-development

 A helper Macro to help print out debug statements from UDRL:
https://rwxstoned.github.io/2025-07-06-Better-debugging-UDRL/

 Some good documentation on Cobalt Strike’s key elements, including the UDRL:
https://rastamouse.me/udrl-sleepmask-and-beacongate/

